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EXECUTIVE SUMMARY 

ORCA wants to accelerate flexible end-to-end network experimentation by making open and modular 

software and hardware architectures available that smartly use novel versatile radio technology. More-

specifically, real-time Software Defined Radio platforms meeting the requirements in terms of runtime 

latencies, throughput, and fast reconfiguration and reprogramming are needed to fulfil this overall 

objective.  

In this deliverable the focus is on essential data plane SDR functionality to achieve low latency and high 

throughput operation by allowing real-time operation. Therefore, ORCA extends the current state-of-

the-art SDR capabilities by designing data-plane SDR solutions on heterogeneous hardware platforms 

that can combine high data rates or low latencies with fast design cycles and high versatility. 

This deliverable will include the ORCA Year 2 implementation results on the available SDR platforms 

and the risk analysis whether all scenarios defined in WP2 are possible for real-time prototyping in the 

testbed facilities. This deliverable will also include a plan for functionality to be implemented in the 

final project year. 
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1 INTRODUCTION 

ORCA wants to accelerate flexible end-to-end network experimentation by making open and modular 

software and hardware architectures available that smartly use novel versatile radio technology. More-

specifically real-time Software Defined Radio (SDR) platforms meeting the requirements in terms of 

runtime latencies, throughput, fast reconfiguration and reprogramming are needed to fulfil this overall 

objective. Further ORCA will offer experimental facilities, with SDR devices incorporating relevant 

software and hardware building blocks that allow easy design, implementation and programming, while 

also achieving low runtime delay allowing end-to-end networking experimentation. 

In this deliverable the focus is on essential data plane SDR functionality to achieve low latency and high 

throughput operation by allowing real-time operation. Therefore, ORCA extends the current state-of-

the-art SDR capabilities by designing data-plane SDR solutions on heterogeneous hardware platforms 

that can combine high data rates or low latencies with fast design cycles and high versatility. Flexible 

end-to-end reconfiguration facilities are described in detail in D4.3 [1]. 

This deliverable will include the ORCA Year 2 implementation results on the available SDR platforms 

and the risk analysis whether all scenarios defined in WP2 are possible for real-time prototyping in the 

testbed facilities. This deliverable will also include a plan for functionality to be implemented in the 

final project year. 

 

1.1 Organization of the Deliverable 

The remaining sections of the document are organized as follows: 

¶ Section 2 describes improvements made to the 60 GHz mmWave system and the plans for the 

28 GHz mmWave antennas to be used with USRPs. NI shows a concept to improve link level 

quality with enhanced phase noise compensation and the exemplary characterization of a 2D 

codebook for beam steering for the 60 GHz mmWave system. In addition, TUD describes how 

the system is integrated to the testbed. 

¶ Section 3 describes two methods to improve the spectral efficiency in a multi-cell Massive 

MIMO system. The first method proposes a new combining vector to reduce computational cost 

without sacrificing spectral efficiency, in a single network with two-cells. While the second 

method considers the coexistence of two networks under different levels of cooperation and its 

impact to the spectral efficiency. 

¶ Section 4 describes the improvements of the TUDôs GFDM framework. In particular, the 

latency of GFDM PHY was measured, demonstrating that the system is suitable for low-latency 

applications. In addition, details on general improvements are provided, e.g, RF control and 

algorithms. Finally, the plan for year 3 is described.  

¶ Section 5 describes IMECôs SDR physical layer improvement regarding Tx/Rx turnaround time, 

the feature is integrated in the upper layer, and it is critical for latency performance of a wireless 

link. 

¶ Section 6 describes TCDś radio virtualisation on demand, supporting the creation of radio slices 

on the fly. 

¶ Section 7 describes the real-time L1/L2 API implementation for NIs SDRs as well as for ns-3 

and the addition of a 5G MAC Protocol implementation 
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Each section is then subdivided into: (i) summary of the implementation results obtained during Year 2 

and these results are integrated into the testbeds, (ii) how the implemented solution is integrated in its 

respective Year 2 ORCA showcase, (iii) a risk analysis whether all scenarios defined in WP2 are 

possible for real-time prototyping in the testbed facilities (iv) and the extension plans currently 

envisioned by the partner for Year 3, the final project year. 
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2 MMWAVE SYSTEMS 

In order to support the development of mmWave systems for small cells, this Section focuses on the 

improvements of the mmWave systems that are offered in TUDs testbed. In particular, NI improved the 

60GHz mmWave system by implementing a phase noise compensation enhancing the link-level 

performance. In addition, antenna characterization for 2D codebook was performed. Moreover, the 

functionalities of manual and automatic beam steering algorithms are integrated to the system, 

increasing the range of applications for the 60GHz mmWave system. TUD integrated the 60 GHz 

mmWave to the testbed and also developed a 26 GHz mmWave antenna to be used with USRPs, 

allowing deployment of mmWave with lower cost and also to benefit from the flexible GFDM PHY. 

2.1 Implementation results 

2.1.1 PHY improvements 

2.1.1.1 60GHz mmWave System 

Phase Noise Compensation for Improved Link-Level Performance 

In a real transceiver system, the base band processing needs to take care of a variety of different 

impairments such as carrier frequency offset, quadrature impairments and more. Of specific interest in 

milimeter-wave (mmWave) transceivers is phase noise which stems from the implementation 

impairments of the local oscillators at the high frequencies of a mmWave system. Experiments have 

shown that the influence of this impairment can severely degrade the decoding link-level decoding 

performance of a transceiver system if no proper care is taken of compensating this behaviour. Figure 1 

shows four realizations of phase noise over the same acquired signal time for different frontends as well 

as different modulation formats. 

 

 

Figure 1: Phase noise measurements from different mmWave frontends. 

The phase drift in these examples ranges from a few degrees in the E band to multiple 100 degrees for 

the V band. As these fluctuations are quite diverse, a compensation algorithm needs to adapt to all of 

them and also cover good performance for frontends with larger phase drifts to ensure proper link-level 

decoding performance.  
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Analysing the drift of a single symbol block reveals that it can be separated into a linear component and 

small-scale fluctuations around that linear component. A current limitation of blind compensation 

algorithms applied after equalization is that these can become unstable when the linear component is 

too large. Additionally, the phase drift has an influence on the channel estimation and equalization 

performance worsening the overall link-level performance so ideally, the linear component should be 

taken care of before any further estimation is done. The solution developed for the mmWave setup in 

ORCA is a two-step approach that subsequently takes care of compensating both components in the 

receiver chain. The implementation diagram in Figure 2 shows the position of the sub algorithms in the 

receiver chain. 

 

Figure 2: Signal Processing block diagram of mmWave Transceiver with highlighted phase compensation steps. 

The linear phase drift component is directly compensated after initial time and frequency 

synchronization and impairment compensation. After this first step, normal FFT processing and 

equalization can be performed. The next two paragraphs shortly describe the principles of the 

aforementioned two steps. 

The compensation of the phase drift in Step 1 makes use of the signal structure. Figure 3 shows the 

phase drift before applying compensation Step 1 over subsequent symbol blocks. 
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Figure 3: Schematic visualization of two-step compensation principle. 

To estimate the absolute phase difference between point A and B in the signal, some a-priori know 

data/pilots need to be utilized. This can be  

- Known pilot-preambles, e.g., in single-carrier implementations such as 802.11ad single-carrier 

PHY  

- Cyclic Prefix/Postfix: used in 802.11ad OFDM PHY, LTE and 5G NR 

This a-priori knowledge of the signal structure can be exploited via auto-correlation to yield the exact 

phase-difference between point A and B in the signal and subsequent symbol blocks accordingly for 

linear interpolation and corresponding compensation. 

After compensation for the linear phase drift component, the second step incorporates the use of a blind 

feed-forward algorithm. The feedforward architecture is considered here as advantageous, as the 

mmWave system has very short symbol times and PHY processing is therefore very time-constraint. An 

iterative feedback-algorithm would be too time-consuming. Secondly, an algorithm for phase 

compensation can be applied that is normally prone to time-dispersive channels. As we employ the 

second step after channel equalization, the phase estimation algorithm sees a signal without any 

intersymbol interference and hence can be simplified. For the current implementation a non-data aided 

feed-forward algorithm for M-QAM from [2, Sec 5.7] is implemented. The symbol blocks are divided 

into sublocks and the blind algorithm does a phase estimation on each of those with a zero-order hold 

interpolation over the time-duration of the subblock. These phase fluctuations are then compensated. 

The resulting gain in terms of SINR is shown in Figure 4. 
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Figure 4: Measured SINR gain without and with phase compensation algorithm. 

Transmitted signals under consideration are modulated with BPSK, 4QAM and 16 QAM. The SINR is 

increased in all cases. For BPSK and 4QAM, the mean of the SINR is increased by approx. 1.7dB. A 

similar gain is seen for 16QAM. A second advantage of the proposed phase drift compensation is the 

decrease in variance of the SINR. This results in a more stable link-level decoding performance as given 

a specific radio transmission scenario, the transceiver system gets a more stable SINR with less 

fluctuation and therefore reduced bit-errors after decoding. 

Two-Dimensional Codebook Characterization 

To benefit from beam steering algorithms at the MAC layer the codebooks for the available beams need 

to be designed carefully for the specific application. The mmWave setup uses an antenna array that in 

principle is capable of using arbitrary codebooks. For the usage in Year 1 of ORCA, only codebooks 

were used that incorporated beams differing by the azimuth angle. These were predefined for the specific 

beam steering frontend. To characterize these codebooks and to get an insight into the beam coverage, 

extensive characterizations were made to make the different beam configurations visible and gather data 

about the spatial coverage and antenna gain of beams in these codebooks. The automated measurement 

head is shown in Figure 5.  

 

 

Figure 5: Measurement Head to characterize different beams and codebooks. 
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An exemplary characterization can be seen in Figure 6. 

 

Figure 6: Characterization results for a single beam ((a) and (b)) from the azimuth codebook as well as the 

coverage of the combined codebook ((c) and (d)). 

Different options to characterize the plots are possible to emphasize different aspects of the beams. Two 

very visual options are shown here exemplarily while the beam characterization options do have more 

options for characterization. One possibility is the 3D beam pattern that gives a 3D representation of the 

respective beam and therefore an overview of the directivity of the beam (See Figure 6 (a)). To better 

assess the coverage of a given beam or codebook, the heatmap can be used to show the distribution of 

the emitted energy in azimuth and elevation. When a complete codebook should be evaluated regarding 

coverage, the two above mentioned plots can also be used. The 3D beam plot and heatmap of the 

complete azimuth codebook are shown in Figure 6 (c) and (d) respectively. Especially in Figure 6 (d), 

the coverage of the emitted energy in the horizontal (azimuth) direction is clearly visible. This codebook 

can only steer its beams in azimuth direction. A goal for broadening the application of the beam steering 

solution in the mmWave setup towards more coverage is the incorporation of codebooks that allow 

steering of beams into not only the azimuth direction but also elevation direction. In the second year of 

ORCA, NI characterized such beam steering matrices to generate a codebook that would enhance the 

coverage. The resulting codebook is shown in Figure 7. 
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Figure 7: 3D Beam Pattern and Heatmap of complete 2D beam codebook. 

Comparing the heatmap of the azimuth codebook in Figure 6 (d) with the heatmap in Figure 7 (b) clearly 

shows an increase in coverage in the elevation direction for the emitted energy. While the azimuth 

codebook had a coverage of approximately +/- 40 degrees in elevation direction and +/- 60 degrees in 

azimuth direction, the 2D codebook increases the elevation coverage to +/- 60 degrees resulting in a 

homogeneous coverage of these two dimensions. This characterization of 2D codebooks will help to 

increase the options for beam steering algorithm development and gives insight into the way how 

different codebook designs translate to real-world measured beams. Although, the 2D codebooks have 

been characterized, it is not planned to integrate a support for these in the setup as the focus of the 

mmWave system shifted towards the 26 GHz system. 
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2.1.1.2 26 GHz mmWave System 

A multi-beam antenna array connected with a 16x16 Butler matrix was developed to allow mmWave 

transmission in at 26 GHz. The PCB scan be seen in Figure 1 

 

Figure 8: 16x16 Butler Matrix prototype. 

The beam pattern of the 8x8 Butler matrix version of this structure was measured. The results showed 

that the theoretical model is very similar to the practical measurements [3], demonstrating that we can 

accurately model the irradiation patterns. The compact antenna design was implemented in cost effective 

PCB technology which is suitable for mmWave systems in 5G. 

2.1.2 Higher layer protocol integration 

In ORCA Year 2 the support of automatic and manual beam steering functionality at MAC layer (see 

offer in D2.2 [4]) was made available to the real-time mmWave baseband system supporting bi-

directional TDD MAC protocol described in D3.1 [5]. 

Automatic beam steering functionality 

As planned two different beam steering algorithms are now selectable and integrated into the advanced 

MAC layer (see MAC software architecture in D3.1 [5]) to achieve automatic beam steering 

functionality.  

1. Exhaustive Search 

2. Parameterized Exhaustive Search 

The main task of the beam steering algorithm is to search the best beam pair in respect to channel quality. 

In a scenario without mobility this could be achieved using the basic exhaustive search algorithm (1). 

In scenarios with mobility a beam tracking functionality is needed in order to ensure a stable link without 

losing the connection. This tracking functionality was implemented in the parameterized exhaustive 

search algorithm (2). Which will be described in more detail after a basic overview. 

 



D3.3: Enhanced operational real-time SDR platforms 

 

© ORCA Consortium 2017-2020 Page 22 of 82 

 

Figure 9: Beam steering algorithm inputs and outputs. 

The beam steering algorithm module (Figure 9) system constrains like antenna configuration, radio 

frame structure as parameters and all channel quality measurements were taken in uplink and downlink 

from a beam steering database. Relying on the history of channel measurements from the database, the 

beam steering algorithm generates a beam schedule table targeting at a specific future radio frame. The 

output scheduling table contains information about the target beam combination for data transmission 

and probing slot assignments. 

Parameterized Exhaustive Search Algorithm 

Starting from the basic beam steering algorithm (1) following extensions where added. On the one hand, 

a measurement combination module was added in order to combine the measurements of multiple radio 

frames instead of only one in the basic algorithm. Hence, more information about channel quality is 

available with equal cost by combining multiple history measurements. As a result, the system was able 

to track channel variance with more updated information. Further transmission throughput was increased 

by reducing disconnection rate or transmitting with a better channel quality. On the other hand, except 

for a relatively constant subset of best beam combinations, additional beam combinations are probed. 

With this, the system is able to achieve updated information about channel variance and adjust 

transmission beam to reduce link disconnection rate. The amount of additional probing can be 

configured during setup time. The behaviour of the beam steering algorithm is described in Figure 10 

and in the subsequent bullet list. 
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Figure 10: Flow chart of Parameterized Exhaustive Search Algorithm. 

¶ Measurements pre-processing 

o Alignment of Access Point and User Device Measurements. 

o Measurement filtering for a specific user. 

¶ Measurements combination 

o Measurements of multiple history radio frames are combined before selecting the best 

beam combinations for data transmission or further probing. 

o The number of combined measurements, defined as an algorithm input parameter, is 

ranging from 1 to 4 currently.  The available measurements are defined as follows: 

 ὓ ὓᴆȟὓᴆ ȣȣȢȟὓᴆ  

where n is frame number of the newest available measurements and H denotes the total 

number of frames we would like to combine. 

o As indicated in Figure 11, the measurements from the newest frame are always reserved 

because of most accurate description of channel quality. Measurements from other 

frames are checked one by one from newest to oldest. 
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Figure 11: Flow chart of measurements combination procedure. 

¶ Probing beam patterns addition 

o Additional beam combinations are probed to gain more information about the channel. 

o Different sets of beam combinations are probed in successive frames to be able to get a 

full map of channel information over multiple radio frames. 

 

Figure 12: Example beam pattern set with Nprob=16. 

o The table below shows the available beam pattern set of the algorithm and information 

about whether it is used for establishment mode or tracking mode. Nprob indicates how 
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many beams are probed additionally in each beam pattern which would be applied in a 

single radio frame and Nfr_num indicates the number of different patterns in a pattern set, 

which is also the number of radio frames over which a full map channel information 

can be achieved.  

Nprob Nfr_num Establishment mode Tracking mode 

2 32  ã 

4 16 ã ã 

8 8 ã ã 

16 4 ã ã 

32 2 ã  

 

In summary, the key improvements compared to the basic exhaustive search algorithm are the following 

¶ Handle channel variance. 

¶ Increase system robustness with less link disconnections. 

¶ Increase transmission data rate. 

¶ Enable multi-user transmission. 

 

Manual Beam steering functionality 

Beside the automatic beam steering functionality using specific algorithms a manual beam steering 

mode was made available. With this, the experimenter can choose specific beam combination during 

the experiment. This allows experiments with a restricted directive transmission and allows e.g. side by 

side comparison of different fixed scenarios. Further, it helps debugging a new developed algorithms 

and codebooks. 

The manual beam steering is controlled from the Access Point. While the beam settings for the Access 

Point are applied directly (Tx + Rx), the beam settings of the User Device (Tx + Rx) are sent via MAC 

protocol. Based on this control information the User Device applies the settings which are received from 

the Access Point. Figure 13 shows a configuration for a manual beam setting on Access Point to ID 3 

for Tx + Rx and User Device to ID 5 for Tx + Rx. 

 

Figure 13: Manual beam steering configuration. 
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2.1.3  Testbed integration 

 

Figure 14: Integration of mmWave with testbed. 

The real-time mmWave system is controlled by the user through a computer that executes LabVIEW. 

This computer is externally accessible via the testbed backbone, where an external user can access the 

mmWave functionalities via remote desktop connection. In addition, the setup is also integrated with 

other languages such as Matlab, which makes possible to design flexible and reproducible experiments. 

This setup is depicted in Figure 14. 

2.2 Relation to showcase 

The High Throughput mmWave system is related to Showcase 1, which is defined with more details in 

deliverable D2.3.  

2.3 Risk analysis 

We identify that the phase noise and RF performance of the 26 GHz antenna can be problematic to the 

multicarrier GFDM PHY. An alternative to this issue could be switching from multicarrier transmission 

to single-carrier waveform. 

2.4 Implementation plan 

2.4.1 PHY improvements 

The goal is to use our current functional GFDM PHY with the 26 GHz antenna, where the output of 

USRP is up-converted with an oscillator. This signal is then fed to the Buttler matrix mmWave antenna. 

This setup is very advantageous. For instance, the development of algorithms for the new frequency 

band can be done in an easier manner by using the USRPs, including the development of beam steering 

algorithms. For the 60GHz mmWave system, no further improvements are planned as the focus has been 

shifted towards the 26GHz mmWave system. 

2.4.2 Higher layer protocol integration 

The GFDM-based mmWave system is expected to be integrated to higher layers using the TestMan, 

which is capable of integrating different applications. 
















































































































