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EXECUTIVE SUMMARY

ORCA wants to accelerate flexible etwdend network experimentation by making open and modular
software and hardware architectures available that smartly use novel versatile radio technology. More
specifically, reatime Software Defined Radio platforms meeting the requirements in terms of runtime
latencies, throughput, and fast reconfiguration and reprogramming are needed to fulfil this overall
objective.

In this deliverable the focus is on essardata plane SDR functionality to achieve low latency and high
throughput operation by allowing re@ine operation. Therefore, ORCA extends the current-sfate
the-art SDR capabilities by designing dgaiane SDR solutions on heterogeneous hardwattopies
that can combine high data rates or low latencies with fast design cycles and high versatility.

This deliverable will include the ORCA Year 2 implementation results on the available SDR platforms
and the risk analysis whether all scenarios definddfiP2 are possible for retiine prototyping in the
testbed facilities. This deliverable will also include a plan for functionality to be implemented in the
final project year.
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1 INTRODUCTION

ORCA wants to accelerate flexible etwdend network experimentation by making open and modular
software and hardware architectures available that smartly use novel versatile radio technoloegy. More
specifically reatime Software Defined RadigeDR) platforms meeting the requirements in terms of
runtime latencies, throughput, fast reconfiguration and reprogramming are needed to fulfil this overall
objective. Further ORCA will offer experimental facilities, with SDR devices incorporating re¢levan
software and hardware building blocks that allow easy design, implementation and programming, while
also achieving low runtime delay allowing etzdend networking experimentation.

In this deliverable the focus is on essential data plane SDR functyaoadithieve low latency and high
throughput operation by allowing re@ine operation. Therefore, ORCA extends the current-sfate
the-art SDR capabilities by designing dgaimne SDR solutions on heterogeneous hardware platforms
that can combine high tarates or low latencies with fast design cycles and high versatility. Flexible
endto-end reconfiguration facilities are described in detail in D#.3 [

This deliverable will include the ORCA Year 2 implementation results on the available SDR platforms
and the risk analysis whether all scenarios defined in WP2 are possible ftimeepfototyping in the
testbed facilities. This deliverable will also include a plan for functionality to be implemented in the
final project year.

1.1 Organization of the Deliverable

The remaining sections of the document are organized as follows:

1 Section 2 describes improvements made to the 60 GHz mmWave system and the plans for the
28 GHz mmWave antennas to be used wigRBs. NI shows a concept to improve link level
quality with enhanced phase noise compensation and the exemplary characterization of a 2D
codebook for beam steerifgy the 60 GHz mmWave systetm addition, TUD describes how
the system is integrated to the testbed.

I Section 3 describes two methods tmiove the spectral efficiency in a mutll Massive
MIMO system. The first method proposes a hew combining vector to reduce computational cost
without sacrificing spectral efficiency, in a single network with 4vedls. While the second
method considerthe coexistence of two networks under different levels of cooperation and its
impact to the spectral efficiency.

 Section 4 describes h e i mprovement s of t he TUDOS GF DN
latency of GFDM PHY was measured, demonstrating thatters is suitable for loMatency
applications. In addition, detaitsn general improvements are provided, e.g, RF control and
algorithms. Finally, the plan for year 3 is described.

T Section 5 describes | MEC6s SDR pthrnaoundtime, | ay e
the feature is integrated in the upper layer, and it is critical for latency performance of a wireless
link.

1 Section 6 describé&CDs radio virtualisation on demand, supporting the creation of radio slices
on the fly.

1 Section 7 describdabe realtime L1/L2 APl implementation for NIs SDRs as wellfasns-3
and the addition of a 5G MAC Protodoiplementation
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Each section is then subdivided into: (i) summary of the implementation results obtained during Year 2
and these results are égrated into the testbeds, (ii) how the implemented solution is integrated in its
respective Year 2 ORCA showcase, (iii) a risk analysis whether all scenarios defined in WP2 are
possible for reatime prototyping in the testbed facilities (iv) and the egien plans currently
envisioned by the partner for Year 3, the final project year.
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2 MMWAVE SYSTEMS

In order to support the development of mmWave systems for small cells, this Sectias toctise
improvements of the mmWawystems that are offered in TUDs testbed. In particular, Nl improved the
60GHz mmWave system by implementing a phase noise compensation enhancing -kiaeellink
performance. In addition, antenna characterization for 2D codebook was performed. Moreover, th
functionalities of manual and automatic beam steering algorithms are integrated to the system,
increasing the range of applications for the 60GHz mmWave system. TUD intetiraté0 GHz
mmWave to the testbed and also developed a 26 GHz mmWave antemmaised with SRPs,
allowing deployment of mmWave with lower cost and also to benefit from the flexible GFDM PHY.

2.1 Implementation results
2.1.1 PHY improvements
2.1.1.1 60GHz mmWave System

Phase Noise Compensation for Improved Linkevel Performance

In a real transceivesystem, the base band processing needs to take care of a variety of different
impairments such as carrier frequency offset, quadrature impairments and more. Of specific interest in
milimeterwave (mmWave) transceivers is phase noise which stems fromnpblementation
impairments of the local oscillators at the high frequencies of a mmWave system. Experiments have
shown that the influence of this impairment can severely degrade the decodiwaydinkecoding
performance of a transceiver system if ngpgrocare is taken of compensating this behavieigurel

shows four realizations of phase noise over the same acquired signal time for different frontends as well
as different modulation formats.
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Figurel: Phase noise measurements from different mmwWave frontends.

The phase drift innese examples ranges from a few degrees in the E band to multiple 100 degrees for
the V band. As these fluctuations are quite diverse, a compensation algorithm needs to adapt to all of
them and also cover good performance for frontends with larger plitiséodensure proper linlevel
decoding performance.
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Analysing the drift of a single symbol block reveals that it can be separated into a linear component and
smalklscale fluctuations around that linear component. A current limitation of blind comipensat
algorithms applied after equalization is that these can become unstable when the linear component is
too large. Additionally, the phase drift has an influence on the channel estimation and equalization
performance worsening the overall litdvel perfemance so ideally, the linear component should be
taken care of before any further estimation is done. The solution developed for the mmWave setup in
ORCA is a twestep approach that subsequently takes care of compensating both components in the

receiver tain. The implementation diagramHkigure2 shows the position of the sub algorithms in the
receiver chain.

Step 1:
Using Autocorrelation of
Pilots embedded in guard

interval

. L . . . Channel estimation and equalization
Time-frequency synchronization + impairment correction

Impairments CFO SNR SNR

1
! 1 1
: 1 1
1 1
: ¢ ¢ 1 1 ¢ *
from DC Offset 1/, Impair. Matche Coarse Fine 1 Lin Phase | ! Channel Equaliza
| Apc _>| corr. H corr |_’| CFO Corr |_’| d Filter H Timing H Timing [ Track I_:—’l FrTan H Estim. |_’| tion ’_’| FFT 912
L 1
S
Received time domain Equalized time domain
symbols y (1) symbols ¥(n)

Data Phase

Adaptation of parameters per slot Code Rate Modulation Scheeffe, SNR

Step 2:
Pilot in guard interval +
multiple blind estimates

Figure2: Signal Processing btk diagram of mmWave Transceiver with highlighted phase compensation steps.

The linear phase drift component is directly compensated after initial time and frequency
synchronization and impairment compensation. After this first step, normal FFT procassing

equalization can be performed. The next two paragraphs shortly describe the principles of the
aforementioned two steps.

The compensation of the phase drift in Step 1 makes use of the signal stitigure3 shows the
phase drift before applying compensation Step 1 over subsequent symbol blocks.
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Measurement
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Figure3: Schematic visualization of twstep compensation principle.

To estimate the abkae phase difference between point A and B in the signal, sgmiera know
data/pilots need to be utilized. This can be

- Known pilotpreambles, e.g., in singt&rrier implementations such as 802.11ad singteer
PHY
- Cyclic Prefix/Postfix: used in@.11ad OFDM PHY, LTE and 5G NR

This apriori knowledge of the signal structure can be exploited via-eartieelation to yield the exact
phasedifference between point A and B in the signal and subsequent symbol blocks accordingly for
linear interpolatiorand corresponding compensation.

After compensation fahe linear phase drift component, the second step incorporates the use of a blind
feedforward algorithm. The feedforward architecture is considered here as advantageous, as the
mmWave system has very short symbol times and PHY processing is therefdimgaonstraint. An
iterative feedbaclklgorithm would be to time-consuming. Secondly, an algorithm for phase
compensation can be applied that is normally prone to-disgersive channels. As we employ the
second step after channel equalization, thasphestimation algorithm sees a signal without any
intersymbol interference and hence can be simplified. For the current implementaticdaanarded
feedforward algorithm for MQAM from [2, Sec 5.7] is implemented. The symbol blocks are divided
into sublocks and the blind algorithm does a phase estimation on each of those witloedeeiwld
interpolation over the timduration of the subblock. These phase fluctuations are then compensated.

The resulting gain in terms of SINR is showrFigure4.
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Figure4: Measured SINR gain without and with phase compensation algorithm.

Transmitted signals under consideration are modulaithdBPSK, 4QAM and 16 QAM. The SINR is
increased in all cases. For BPSK and 4QAM, the mean of the SINR is increased by approx. 1.7dB. A
similar gain is seen for 16QAM. A second advantage of the proposed phase drift compensation is the
decrease in variar®f the SINR. This results in a more stable-leNel decoding performance as given

a specific radio transmission scenario, the transceiver system gets a more stable SINR with less
fluctuation and therefore reduced-bitrors after decoding.

Two-Dimensional CodebookCharacterization

To benefit from beam steering algorithms at the MAC layer the codebooks for the available beams need
to be designed carefully for the specific application. The mmWave setup uses an antenna array that in
principle is capable afising arbitrary codebooks. For the usage in Year 1 of ORCA, only codebooks
were used that incorporated beams differing by the azimuth angle. These were predefined for the specific
beam steering frontend. To characterize these codebooks and to getlarintsitne beam coverage,
extensive characterizations were made to make the different beam configurations visible and gather data
about the spatial coverage and antenna gain of beams in these codebooks. The automated measuremen
head is shown ifigure5.

Figure5: Measurement Head to characterize different beams and codebooks.
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An exemplary characterization can be seeFigure6.

azimuth

—

(d)

Figure6: Characterization results for a single beam ((a) and (b)) from the azimuth codebook as well as the
coverage of the combidecodebook ((c) and (d)).

Different options to characterize the plots are possitdenphasize different aspects of the beams. Two

very visual options are shown here exemplarily while the beam characterization options do have more
options for characterizi@an. One possibility is the 3D beam pattern that gives a 3D representation of the
respective beam and therefore an overview of the directivity of the bearki{fbee6 (a)). To better

assess the coverage of a given beam or codebook, the heatmap can be used to show the distribution of
the emitted energy in azimuth and elevation. When a complete codebook should be evaluated regarding
coverage, the two alwe mentioned plots can also be used. The 3D beam plot and heatmap of the
complete azimuth codeboakeshown inFigure6 (c) and (d) respectively. Especially kigure6 (d),

the coverage of the emitted eggin the horizontal (azimuth) direction is clearly visible. This codebook

can only steer its beams in azimuth direction. A goal for broadening the application of the beam steering
solution in the mmWave setup towards more coverage is the incorporatimuetfooks that allow
steering of beams into not only the azimuth direction but also elevation direction. In the second year of
ORCA, NI characterized such beam steering matrices to generate a codebook that would enhance the
coverage. The resulting codebdskshown inFigure?.
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Figure7: 3D Beam Pattern and Heatmap of complete 2D beam codebook.

Comparing the heatmap of therazith codebook ifrigure6 (d) with the heatmap iRigure? (b) clearly

shows an increase in coverage in the elevation direction for the emitted energy. While the azimuth
codebook had a coverage of approximately4®/degrees in elevation direction and 80 degrees in
azimuth direction, the 2D codebk increases the elevation coverage to66/ degrees resulting in a
homogeneous coverage of these two dimensions. This characterization of 2D codebooks will help to
increase the options for beam steering algorithm development and gives insight intaytihew
different codebook designs translate to-#gatld measured beamalthough, the 2D codebooks have

been baracterized, it is not planned to integrate a support for these in the setup as the focus of the
mmWave system shifted towards tH&&@Hz systen.
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2.1.1.2 26 GHz mmWave System

A multi-beam antenna array connected with a 16x16 Butler matrix was developed to allow mmWave
transmission in at 26 GHz. The PCB scan be seen in Figure 1

Figure8: 16x16 Butler Matrix prototype.

The beam pattern of the 8x8 Butler matrix version of this structure was measured. The results showed
that the theoretical model is very similar to the practical measurendntéeinonstrating that we can
accurately model #hirradiation patterns. The compact antenna design was implemented in cost effective
PCB technology which is suitable for mmWave systems in 5G.

2.1.2 Higher layer protocol integration

In ORCA Year 2 the support of automatic and manual beam stdarintjonality at MAC layer (see
offer in D2.2 H]) was made available to the rdehe mmWave baseband system supporting bi
directional TDD MAC protocol described in D33][

Automatic beam steering functionality

As planned two different beam steeringalthms are now selectable and integrated into the advanced
MAC layer (see MAC software architecture in D3.4])[to achieve automatic beam steering
functionality.

1. Exhaustive Search

2. Parameterized Exhaustive Search

The main task of the beam steering algorithm is to search the best beam pair in respect to channel quality.

In a scenario without mobility this could be achieved using the basic exhaustive searchnal@rith

In scenarios with mobility a beam tracking functionality is needed in order to ensure a stable link without
losing the connection. This tracking functionality was implemented in the parameterized exhaustive
search algorithm (2). Which will be dedmed in more detail after a basic overview.
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channel measurements Beam steering W heam schedule tabla

algorithm J )

Figure9: Beam steering algorithm inputs and outputs

system constraints

The beam steering algorithm modulegure 9) system constrains like antenna configuration, radio
frame structure as parameters and all channel quality measurements were taken in uplink and downlink
from a beam steering database. Rejyon the history of channel measurements from the database, the
beam steering algorithm generates a beam schedule table targeting at a specific future radio frame. The
output scheduling table contains information about the target beam combination fvasti@ssion

and probing slot assignments.

Parameterized Exhaustive Search Algorithm

Starting from the basic beam steering algorithm (1) following extensions where added. On the one hand,
a measurement combination module was added in order to combineabaraments of multiple radio
frames instead of only one in the basic algorithm. Hence, more information about channel quality is
available with equal cost by combining multiple history measurements. As a result, the system was able
to track channel variae with more updated information. Further transmission throughput was increased
by reducing disconnection rate or transmitting with a better channel quality. On the other hand, except
for a relatively constant subset of best beam combinations, additieaxa tombinations are probed.

With this, the system is able to achieve updated information about channel variance and adjust
transmission beam to reduce link disconnection rate. The amount of additional probing can be
configured during setup time. The belwaw of the beansteering algorithm is described figure 10

and in the subsequent bullet list.
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measurements pre-processing

'

/ combi_fr_no /—b history measurement combination

measurements

not empty ?
/ tracking_prob_num / select at most 3 best beams ’ establis_prob_num ;
select tracking beam patterns |~ add beam patterns without overlapping exhaustive searching |4 select establishment beam patterns
/ beam schedule table and status /

L\
end

Figurel0: Flow chart of Parameterized Eadstive Search Algorithm

1 Measurements pygrocessing
o0 Alignment of Access Point and User Device Measurements.
0 Measurement filtering for a specific user.

1 Measurements combination

0 Measurements of multiple history radio frames are combined before seleetingsth
beam combinations for data transmission or further probing.

0 The number of combined measurements, defined as an algorithm input parameter, is
ranging from 1 to 4 currently. The available measurements are defined as follows:

O O0PFP 88 die
where n is frame number of the newest available measurements and H denotes the total
number of frames we would like to combine.

0 Asindicated irFigurell, the measurements from the newest frame are always reserved
because of most accurate description of channel quality. Measurements from other
frames are checked one by one from newest to oldest.
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Figure11: Flow chart ofmeasurements combination procedure
1 Probing beam patterns addition
0 Additional beam combinations are probed to gain more information about the channel.

o Different sets of beam combinations are probed in successive frames to be able to get a
full map of chanel information over multiple radio frames.

cp_beam

01 2 3 45 6 7 01 2 3 45 6 7 01 2 345 & 7 o1 2 3 4 5 6 7

B Y L =1
B I T N -

wesqAw

K=0 K=1 k=2 k=3

Figure12: Example beam pattern set with Nprob=16.

o0 The table below shows the available beam pattern set of the algorithm and information
about whether it is used for establishment madeacking mode. Mo, indicates how
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many beams are probed additionally in each beam pattern which would be applied in a
single radio frame andiNwumindicates the number of different patterns in a pattern set,
which is also the number of radio framespwhich a full map channel information

can be achieved.

Nprob Nt num Establishment mode| Tracking mode
2 32 a
4 16 a a
8 a a
16 4 a a
32 a

In summary, the key improvements compared to the basic exhaustive search algorithrioboeihe
1 Handle channel variance.
1 Increase system robustness with less link disconnections.
9 Increase transmission data rate.
1

Enable multuser transmission.

Manual Beam steering functionality

Beside the automatic beasteering functionality usingpecific algorithms a manual beasieering

mode was made available. With this, the experimenter can choose specific beam combination during
the experiment. This allows experiments with a restricted directive transmission and allows e.g. side by
side comparison dfifferent fixed scenarios. Further, it helps debugging a new developed algorithms
and codebooks.

The manual bearsieering is controlled from the Access Point. While the beam settings for the Access
Point are applied directly (Tx + Rx), the beam settirfigh® User Device (Tx + Rx) are sent via MAC
protocol. Based on this control information the User Device applies the settings which are received from
the Access Poinfigure13 shows a configuration for a manual beam setting on Access Point to ID 3
for Tx + Rx and User Device to ID 5 for Tx + Rx.

rem st -
v | ot | Mo | s | s | eoasas | ssases | 0 | teoss [1750] mmWave Transceiver AP
global ri mo 1934 glabal ot s | 110

COMMON | LLORY | LLCTRL | LZMAC  LEMAL Test Modes

S

estMode GUE | DATASO |

L_basm_settings sshed_parami_ap o —

User

Figure13: Manual beam steering configuration
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2.1.3 Testbed integration

Figurel4: Integration of mmWave with testbed.

The realtime mmWave system is controlled by the user through a computer that executes LabVIEW.
This computer is externally accessible via the testbed backbone, where an external usesssahecc
mmWave functionalities via remote desktop connection. In addition, the setup is also integrated with
other languages such as Matlab, which makes possible to design flexible and reproducible experiments.
This setup is depicted Figurel14.

2.2 Relation to showcase

The High Throughput mmWave system is related to Showcase 1, which is defined with more details in
deliverable D2.3.

2.3 Risk analysis

We identify that the phase noise and RF performance of the 26 GHz antenna can be problematic to the
multicarrier GFDM PHY. An alternative to this issue could be switching from multicarrier transmission
to singlecarrier waveform.

2.4 Implementation plan

2.4.1 PHY improvements

The goal is to use our current functional GFDM PHY with the 26 GHz antenna, where the output of
USRP is ugconverted with an oscillator. This signal is then fed to the Buttler matrix mmWave antenna.
This setup is very advantageous. For instance, e¢lreldpment of algorithms for the new frequency

band can be done in an easier manner by using the USRPSs, including the development of beam steering
algorithms For the 60GHz mmWave system, no further improvements are planned as the focus has been
shifted tavards the BGHz mmWave system.

2.4.2 Higher layer protocol integration

The GFDMbased mmWave system is expected to be integrated to higher layers using the TestMan,
which is capable of integrating different applications.
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