
A Chirp-Based Frequency Synchronization
Approach for Flat Fading Channels

Ana Belen Martinez∗, Atul Kumar∗, Marwa Chafii†, Gerhard Fettweis∗

∗Vodafone Chair Mobile Communications Systems, Technische Universität Dresden, Germany
{ana-belen.martinez,atul.kumar,fettweis}@ifn.et.tu-dresden.de
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Abstract—In different new and emerging technologies, where
high frequency offsets (FOs) are expected due to the low-cost
nature of the local oscillators, and low sampling rates are chosen
for the sake of power efficiency, accurate FO estimation becomes
a challenging task. This work proposes a frequency synchro-
nization approach based on a dual-chirp training sequence. Its
performance is evaluated by means of simulations and validated
with the derived Cramer-Rao lower bound. It is shown that the
proposed method achieves near-optimum performance with lower
complexity than the state-of-the-art approach.

Index Terms—Frequency offset estimation, synchronization,
up-down-chirp, dual-chirp, reference sequences, CRLB.

I. INTRODUCTION

The cost-effectiveness sought by different new and emerging
technologies entails the choice of low-cost local oscillators.
Therefore, due to their low accuracy, high frequency offsets
(FOs) may appear between the reference frequency at the
receiver used for down-conversion and the carrier frequency
of the received signal. Moreover, in order to achieve low
complexity at the end device, a low sampling rate for initial
synchronization is commonly selected. Thus, the low accuracy
associated to a low sampling rate, together with the potentially
high FOs, poses an important challenge in the FO estimation, a
crucial task that has to be appropriately accomplished to avoid
performance degradation at the receiver.

Aiming at high probability of detection in the low signal-
to-noise ratio (SNR) regime and moderate latency, a detection
approach based on matched filtering is widely used in the liter-
ature. The robustness of chirp sequences against high FOs in a
matched filter-based detection, as well as their special time and
frequency properties, have motivated their application in the
detection process and in the estimation of the synchronization
parameters [1] [2]. In [1], a training sequence consisting of a
linear up-chirp followed by its conjugate, known as linear up-
down-chirp, assists the synchronization process under additive
white Gaussian noise (AWGN) channel conditions. For the
sake of low latency, fractional and integer frequency offsets
are estimated independently. The periodicity obtained after
downsampling a linear chirp is utilized for the estimation of
the fractional frequency offset (FFO) with an approach based
on autocorrelation (AC). For the calculation of the integer
frequency offset (IFO), a laborious algorithm is implemented,

which requires the center value above a certain threshold at
the output of each matched filter (MF).

A dual-chirp, which consists of a linear up-chirp transmitted
simultaneously with its complex conjugate down-chirp, acts
as a reference signal for synchronization in AWGN channels
in [3]. The outputs of the MFs matched to each of the
linear chirps are exploited for the estimation of the FO in
frequency domain. However, its performance is linked to a
high computational complexity due to the calculation of a
discrete Fourier transform (DFT) with an upsampling factor
and a subsequent polynomial interpolation.

This work proposes a frequency synchronization approach
with a dual-chirp as a reference signal, suitable for flat fading
channels under high FOs. Unlike in [3], the FO estimation
is accomplished in time domain. The FFO, obtained through
AC, is compensated in the reference signal prior to the IFO
estimation. The IFO can thus be easily estimated using the
positions of the global maxima at the outputs of the MFs.

Under the assumption of perfect time synchronization, the
proposed approach is derived for a dual-chirp and for a linear
up-down-chirp. Theoretical limits in terms of the Cramer
Rao lower bounds (CRLBs) are derived for each reference
sequence, which serve as benchmarks for results evaluation.
Comprehensive simulations have been conducted to verify the
validity of the presented technique. For the purpose of com-
parisons, the DFT-based approach described in [3] has been
implemented with different upsampling factors and evaluated
with both reference sequences. It is shown that the proposed
approach achieves a performance close to the CRLB with low
computational complexity, and significantly outperforms the
state-of-the-art algorithm for moderate to high SNR regimes.

The remainder of this paper is structured as follows. In
Section II, the system model and the reference sequences
are introduced. The proposed synchronization algorithm is
presented in Section III. In Section IV, the CRLBs are derived.
Simulation results are provided and discussed in Section V.
Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Under perfect time synchronization, the received baseband
signal in discrete time domain can be described as

r[n] = hx[n]ej2πεn + w[n], (1)



where h represents the complex channel gain, unknown but
constant over the transmission duration of the reference signal
x[n], ε indicates the FO, normalized by the sampling frequency
fs, and w[n] denotes complex AWGN with zero mean and
variance σ2.

A. Linear Up- and Down-Chirp Signals

The linear up- and down-chirp sequences can be expressed
as

xu[n] = e
jπ

(
n2

Nl
−n

)
, and xd[n] = e

−jπ
(
n2

Nl
−n

)
, (2)

where n = 0, 1, ..., Nl − 1. The length of the sequence, Nl,
known as compression factor in radar systems, is given by the
time-bandwidth product Nl = BTl, where B is the frequency
band swept during the time span Tl. The reference sequence
built with a linear up-chirp followed by its complex conjugate,
or down-chirp, is thus given by

xl[n] =

{
xu[n], n = 0, 1, ..., Nl − 1,

x∗u[n−Nl], n = Nl, Nl + 1, ..., 2Nl − 1.
(3)

B. Dual-Chirp Signal

The dual-chirp, also referred to as composite chirp, consists
of one linear up-chirp and its corresponding down-chirp, which
are transmitted simultaneously. Since the down-chirp is the
complex conjugate of the up-chirp, the resulting signal is
purely real-valued, and can be formulated as

xc[n] = α cos

(
π

(
n2

Nc
− n

))
, (4)

where n = 0, 1, ..., Nc − 1, being Nc the length in samples
of the dual-chirp, and α represents a normalization factor to
ensure unitary power.

In terms of the underlying linear chirps, xc[n] can be
expressed as

xc[n] =
α

2
(xu[n] + xd[n]) , (5)

being xu[n] and xd[n] the sequences given in (2), of length
Nc.

III. FREQUENCY OFFSET ESTIMATION

The estimation of the FO is accomplished in different stages.
The FFO is initially calculated and subsequently compensated
in the received reference sequence. Afterwards, using the
sequence with compensated FFO, the IFO is found. Without
loss of generality, the detailed analysis presented in the next
subsections is based on the up-down-chirp, and thereafter the
modifications to be done when applying the dual-chirp are
explained.

A. Fractional Frequency Offset Estimation

The method employed for the estimation of the FFO takes
advantage of the periodicity generated after downsampling a
chirp sequence. In particular, downsampling a linear chirp with
compression factor Ni by 2 results in another linear chirp
sequence with compression factor Ni/4. Thus, Ni should be
an integer multiple of 4. The downsampled sequence exhibits
a periodicity of Ni/4 samples that can be exploited for

synchronization with an AC-based approach. Specifically, the
phase of the AC of a periodic signal at its maximum provides
an estimation of the FFO [4].

At the entrance of the synchronization block, a demulti-
plexer extracts samples from the received signal r[n] alter-
natively, generating two downsampled signals, r1[n] = r[2n],
and r2[n] = r[2n+ 1].

Considering the linear up-down-chirp as reference, the first
Nl/2 samples of each demultiplexed sequence correspond to
a downsampled version of the received up-chirp, whilst the
second Nl/2 samples refer to the down-chirp as:

ru,1[n] = r1[n], rd,1[n] = r1[n+Nl/2],

ru,2[n] = r2[n], rd,2[n] = r2[n+Nl/2], (6)

for n = 0, 1, ..., Nl/2− 1. Consequently, four different signals
of length Nl/2 are available to perform four independent ACs.

The AC with sliding and averaging windows of Wl = Nl/4
samples can be calculated according to

pj,q[n] =
1

Wl

Wl−1∑
k=0

rj,q[n+ k +Wl]r
∗
j,q[n+ k], (7)

where j ∈ {u, d} and q ∈ {1, 2}. Neglecting the noise terms
for simplicity, the outputs of the autocorrelators at the maxi-
mum of their absolute values can be expressed as

pj,1[nj,1,max] = |h|2 (−1)b ejπεNl , (8)

pj,2[nj,2,max] = |h|2 (−1)b+1
ejπεNl , (9)

where b = mod(Wl, 2), with mod(.) being the modulo opera-
tor. The corresponding phases

φj,1 =∠pj,1[nj,1,max] = πεNl + bπ, (10)
φj,2 =∠pj,2[nj,2,max] = πεNl + (1− b)π, (11)

can be used to estimate the individual FFOs as

ε̂j,1 =
1

Nl

[
1

π
φj,1 − b

]
, ε̂j,1 ∈

1

Nl
[−(1 + b), (1− b)] ,

(12)
ε̂j,2 =

1

Nl

[
1

π
φj,2 − (1− b)

]
, ε̂j,2 ∈

1

Nl
[(b− 2), b] . (13)

In order to achieve an estimation with high accuracy, the
information provided by all individual phases should be used.
However, since ε̂j,1 and ε̂j,2 lie in different definition domains,
a simple average of the phases would reduce the effective
estimation range of the FFO to [−1/Nl, 0]. This effect can
be avoided with the modification of the phases obtained from
the second demultiplexed signal as φ′j,2 = φj,2 − π. The FFO
can thus be obtained as

ε̂F,l =
φu,1 + φd,1 + φ′u,2 + φ′d,2

4πNl
. (14)

Demultiplexing the dual-chirp enables the computation of
two ACs, where the sliding and averaging windows consist of
Wc = Nc/4 samples. The maxima of the ACs are given by

pc,1[n1,max] = |h|2 α2 (−1)b ejπεNc , (15)

pc,2[n2,max] = |h|2 α2 (−1)b+1
ejπεNc . (16)



The same reasoning as in the previous case leads to an
estimation of the FFO as

ε̂F,c =
φ1 + φ′2
2πNc

, (17)

where φ1 corresponds to the phase of pc,1[n1,max] and φ′2 refers
to the phase of pc,2[n2,max] after phase compensation.

B. Integer Frequency Offset Estimation

After FFO compensation, the IFO can be found using the
information provided by the outputs of the MFs.

The impulse response gi,j [n] of the MF matched to the
signal xj [n] can be formulated as

gi,j [n] = βix
∗
j [Ni − 1− n], (18)

where i ∈ {l, c}, j ∈ {u, d}, and

βi =

{
1, i = l,

1/α, i = c.
(19)

The convolution between the signal r[s]εf [n] and the matched
filter gi,j [n] is defined as

mi,j [n] =
1

Ni

∞∑
k=−∞

r[s]εf [k]gi,j [n− k], (20)

where r[s]εf [n] is the reference signal after proper compensation
of the FFO ε̂F , and it can be described as

r[s]εf [n] = r[n+ si,jNi]e
−j2πε̂F,i(n+si,jNi), (21)

where

si,j =

{
0, (i = l ∧ j = u) ∨ i = c,

1, (i = l ∧ j = d),
(22)

with ∧ and ∨ as the logical operators ”and” and ”or”, respec-
tively.

After some algebraic manipulations, the magnitudes of the
outputs of the MFs can be written as

|mi,u[n
′
i]| = |h|(1− |n′i|)

∣∣∣∣ sinc (Ni(n′i + εI,i)(1− |n′i|))
sinc(n′i + εI,i)

∣∣∣∣ ,
(23)

|mi,d[n
′′
i ]| = |h|(1− |n′′i |)

∣∣∣∣ sinc (Ni(n′′i − εI,i)(1− |n′′i |))sinc(n′′i − εI,i)

∣∣∣∣ ,
(24)

where the new discrete time indexes, n′i and n′′i , are given by

n′i =
n−Ni + 1

Ni
, and n′′i =

n− γiNi + 1

Ni
, (25)

with
γi =

{
2, i = l,

1, i = c,
(26)

and the frequency offset εI,i represents the IFO (plus some
residual FFO, which will be neglected for this analysis),
normalized by the sampling frequency.

The arguments of the outputs of the MFs at their maximum
correspond to

n̂i,u = argmax
n

|mi,u[n
′
i]| = −NiεI,i +Ni − 1, (27)

n̂i,d = argmax
n

|mi,d[n
′′
i ]| = NiεI,i + γiNi − 1, (28)

which can, ideally, be combined to estimate the IFO. However,
the presence of uncompensated FFOs of magnitude close to
half of the IFO spacing (fs/Ni), distorts the ideal behavior
of the MF. Its output is not characterized by a clearly defined
maximum, but by two values of similar amplitude. In this case,
choosing the index of the highest value can lead to ambiguities
in the estimation of the IFO. An accurate estimation should
consider the position of the first value exceeding a certain
threshold at the output of each MF. The IFO can thus be
estimated with an accuracy of fs/(2Ni), avoiding potential
ambiguities due to uncompensated FFOs. The new indexes,
after ambiguity resolution, provide an estimation of the IFO
as

ε̂I,i =
n̂i,d − n̂i,u − (γi − 1)Ni

2Ni
. (29)

Hence, the overall FO estimated with each sequence consists
of two terms, as ε̂i = ε̂I,i + ε̂F,i.

C. DFT-Based Frequency Offset Estimation

The approach presented in [3] exploits the properties of the
DFT for the estimation of the FO. After multiplying the time-
synchronized received signal with the complex conjugate of
each reference chirp, βix∗j [n], two DFTs with an upsampling
factor are performed. The maxima obtained at the outputs of
the DFTs are used for the estimation of the FO, similarly to
the approach described in time domain, making use of the
time-frequency duality of the DFT.

IV. CRLBS FOR FREQUENCY OFFSET ESTIMATION

The likelihood function (LF) of the received vector r,
with Ni independent observations in complex AWGN, can be
expressed as [5]

p(r; ξ) =
1

πN det(Cr(ξ))
e[−(r−s(ξ))HCr(ξ))−1(r−s(ξ))], (30)

where Cr(ξ) = σ2I is the covariance matrix of the received
signal r[n], and the components of s(ξ) are given by

s[n] = h0x[n]e
j2πεnejφh , n = 0, 1, ..., Ni − 1, (31)

where h0 and φh are, respectively, the magnitude and the
argument of the complex channel gain h, and x[n] corresponds
to the transmitted reference sequence of length Ni samples,
which will be properly specified in the next subsections.

The second derivative of the log-likelihood function (LLF)
of r with respect to the parameters p and q, provides the
{p, q}-element of the Fisher information matrix, which can
be calculated as [5]

[I]p,q =
2

σ2
Re

[
Nl−1∑
n=0

∂s∗[n]

∂ξp

∂s[n]

∂ξq

]
, (32)

where p, q ∈ {1, 2, 3}, refer to the components of the vector
of unknown real parameters ξ = [h0 ε φh]

T .



A. CRLB for Linear Up-Down-Chirp

For the derivation of the CRLB of the FO attainable
with a linear up-chirp, the signal x[n] equals xu[n], for
n = 0, 1, ..., Nl − 1. The Fisher information matrix is given
by

I =
2Nl
σ2

1 0 0

0
2π2h2

0(Nl−1)(2Nl−1)
3 πh20(Nl − 1)

0 πh20(Nl − 1) h20

 . (33)

With SNR = h20/σ
2, and after some algebraic manipula-

tions, the minimum variance associated to the up-chirp can
be expressed as

V ar(ε̂l,u) ≥ [I−1]22 =
3

2π2Nl(N2
l − 1)SNR

, (34)

which is the same as the variance attainable with the down-
chirp. Therefore, due to the additivity property of the infor-
mation for independent observations [6], the variance obtained
with the training sequence consisting of one up-chirp followed
by one down-chirp results in

V ar(ε̂l) =
1

2
V ar(ε̂l,u). (35)

B. CRLB for Dual-Chirp

In this case, x[n] = xc[n], for n = 0, 1, ..., Nc − 1. The same
procedure as in the preceding case yields the new Fisher
information matrix

I =
2

σ2

α2U 0 0

0 4π2h20α
2W 2πh20α

2V

0 2πh20α
2V α2h20U

 . (36)

After applying the following approximations,

U=

Nc−1∑
n=0

cos2
(
π

(
n2

Nc
− n

))
≈Nc

2
, (37)

V =

Nc−1∑
n=0

n cos2
(
π

(
n2

Nc
− n

))
≈Nc(Nc − 1)

4
, (38)

W =

Nc−1∑
n=0

n2 cos2
(
π

(
n2

Nc
− n

))
≈Nc(Nc − 1)(2Nc − 1)

12
,

(39)

the lower bound for the variance of the FO obtainable with a
dual-chirp of length Nc samples can be written as

V ar(ε̂c) ≥ [I−1]22 ≈
3

4π2α2Nc(N2
c − 1)SNR

. (40)

With Nc = ρNl, the ratio between the CRLBs achievable with
both training sequences can be expressed as

R =
V ar(ε̂l)

V ar(ε̂c)
=
α2ρ(ρ2N2

l − 1)

(N2
l − 1)

. (41)

V. SIMULATION RESULTS

This section presents the performance evaluation of the pro-
posed synchronization approach described in Section III. For
this purpose, simulations have been conducted and compared

to the theoretical references provided by the derived CRLBs.
The sweeping frequency B of the reference signal is set to
180 kHz. The system is assumed to work at the Nyquist rate.
For a fair comparison, both reference signals are transmitted
with the same power and have the same length, with Nl = 64
and Nc = 128 samples. Nl and Nc are chosen to ensure
integer compression factors after downsampling the sequences.
During the simulations, a uniformly distributed FO in the
range [−18, 18] kHz has been generated, corresponding to a
transmission in the 900MHz band and an accuracy of the local
oscillators of 20 ppm.

In order to compare the performance of the proposed ap-
proach with the state-of-the-art algorithm [3], the latter has
been implemented and simulated with upsampling factors 4
and 8. Additionally, least-squares (LS) based second-order-
polynomial interpolation with an upsampling factor 4 has
been incorporated to increase the accuracy of the estimation.
The coefficients of the second-order-polynomial are calculated
according to the least-squares principle, based on three samples
selected at the output of the DFT, namely the highest one, the
preceding, and the following.

The metric selected for the performance evaluation is the
mean squared error (MSE) of the estimation, defined as
MSE = E

[
(ε− ε̂)2

]
, where ε and ε̂ are normalized by the

sampling frequency.
The simulation results obtained with the up-down-chirp

and with the dual-chirp are depicted in Fig. 1(a) and 1(b),
respectively. Even though they show similar behavior, there
is a clear difference in the magnitude of the MSE. This effect
is in accordance with the theoretical ratio between variances
given in (41), which in this case has a value of 5.65 dB. It can
be shown that, for ρ = 2 and long sequences, α ≈ 1/

√
2, and

the ratio R tends to 6 dB. The main reason for the superiority of
the dual-chirp is the higher compression factor of its underlying
linear reference sequences.

The estimation obtained with the proposed approach
achieves an MSE close to the CRLB for SNR values above
5 dB. In the low SNR regime, the MSE is significantly im-
proved through the phase compensation described in III-A
(Proposed mod). The performance achievable with the DFT-
approach highly depends on the upsampling factor and the LS
interpolation. Especially the latter operation can substantially
improve the accuracy of the estimation, and provide, in a
limited SNR range, an MSE lower than the proposed approach.
Nevertheless, the MSE obtained with the DFT-approach shows
an error floor, which can only be reduced through the use of
higher upsampling factors and interpolation. Consequently, a
performance improvement leads to an increase in latency and
computational complexity.

Table I lists the computational complexity of each approach
in terms of number of complex multiplications (CMs). The
proposed approach considers the CMs associated to the ACs
and MFs. In case of the up-down-chirp, four ACs of length
Nl/4 are calculated, whilst with the dual-chirp, two ACs
of length Nc/4 are computed. For the sake of efficiency,
matched filtering has been implemented in frequency domain.
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(a) Linear up-down-chirp
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Fig. 1: MSE of the frequency offset estimation obtained with (a) a linear up-down-chirp and (b) a dual-chirp.

Appropriate zero padding has been considered to achieve
equivalence between linear and circular convolution, and en-
able a DFT operation based on Radix-2 fast Fourier transform
(FFT). These assumptions lead to the new extended lengths,
Nl,ext = 128, and Nc,ext = 256 samples.

The DFT-based approach includes the initial multiplication
with the complex conjugate of each linear reference signal,
the complexity due to the DFT operation (assuming Radix-2
FFT implementation), and the complexity required for the LS
interpolation (CLS). The latter includes the operations needed to
find the coefficients of the second-order polynomial, evaluate
the polynomial at the newly defined positions, and find the
maximum.

Considering the simulation parameters, the DFT-based ap-
proach with upsampling factor 8 requires approximately 40%
more CMs than the proposed approach. A further improvement
of the accuracy achieved with the state-of-the-art algorithm,
through the use of higher upsampling factors, would increase
significantly the number of CMs, making the difference in
terms of complexity between both approaches more evident.

The compression factor of the reference signal, is respon-
sible, not only for the accuracy of the estimation, but also
for the complexity. Therefore, a higher compression factor
selected for the dual-chirp, compared to the up-down-chirp,
implies a higher number of CMs, independently of the adopted
algorithm.

TABLE I: Complexity of the presented approaches.
Approach Complexity (CMs)
Proposed 1 0.5γiNi + 2 (1.5 log2(Ni,ext) + 1)
DFT 2Ni + fupNi log2(fupNi) + 2CLS

1 γi as defined in (26)

VI. CONCLUSIONS

In this work, a chirp-based frequency synchronization ap-
proach, suitable for flat fading channels under high FOs,
has been proposed and examined in detail. Its performance

has been evaluated by means of simulations, compared to
the state-of-the-art approach, and validated with theoretical
limits provided by CRLBs. Aiming at low complexity, the
synchronization process can be undertaken at a low sampling
rate, avoiding upsampling and interpolation. Nevertheless, a
high accuracy is achieved, and the approach exhibits near-
optimum performance for SNR values above 5 dB.

Two training sequences have been considered for the evalua-
tion. Under the assumption of identical length and transmit
power, it is shown that the dual-chirp achieves a lower MSE
than the linear up-down-chirp, at the cost of higher computa-
tional complexity.

The ratio between the derived CRLBs and the complexity
analysis can be used as tools for the design and selection of the
most suitable reference sequence that allows to meet specific
system requirements.
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